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Exact and Approximation Algorithms
for a Scheduling Problem

Gregory Dobson
Systems Optimization Laboratory

Department of Operations Research

Stanford University
Stanford, California 94305

AbstractI

This paper discusses problems that arose in calendaring cases for an

appellate court. The first problem is to distribute cases among panels of

judges so as to equalize work loads. We give a worst case analysis of a

heuristic for this )IP-complete problem. For a given distribution denote

by z the heaviest work load. We wish to minimize z. The ratio of the

heuristic value Z to that of the true optimum z* is shown to be 2/z* < (k +

3)/(k + 2) where all the case weights are in [0, (1/k)z*], generalizing a result

of Graham on multiprocessor scheduling. Under a restrictive assumption on

the case weights, some generalizations of this scheduling problem are solved.

Characterizations for feasible calendars and polynomial algorithms for finding

these feasible solutions are given. Algorithms are given for choosing an

optimal subset of the backlogged cases that can be calendared.

A064991of cT on-.-------

Distribution/. -

Availability 
Code%

.... ... A v A I l 8,nd / o r

Dist peocial



§1 Problem Statement 1

1. Problem Statement

The following problem arose from calendaring cases for the U. S. 9th Circuit

Court of Appeals. We are given a large collection of cases each with a weight

assessing its difficulty (and thus its requirement for court time), and the date

it arrived in the queue of the backlogged cases (used as an indicator of its

priority). Each month there are, say, b panels of judges each with the same

capacity to hear cases. Normally -the judges are all circuit (higher) court

judges who may hear any case. Occasionally it is necessary, however, for the

court to borrow judges from the district (lower) courts. A judge from district

z is not allowed to hear a case from district x. At most one district judge

is assigned to a panel. Given these assignments, the problem is to find an

optimal, in some sense, subset of the backlogged cases and assign them to

panels so that the panels receive equal work loads and no district judge hears

a case from his/her district.

We abstract the problem to the following coloring problem. There is a

large collection of items (cases), I. For each item j we associate a weight,

wj, and a cost (arrival date), t3 . There is a set of bins (panels), B. Bin k

has a capacity 8k. Furthermore we assign a 'color' to each district and give

each item (case) j the color c3 of its district. If a panel has a district z judge

then the associated bin k is colored dk =- x. The restriction is that an item

colored x cannot be placed in a bin colored z. Our problem is to find the

optimal collection J C I that solves

maximize t(J)
JCI

s. t. P = (PI, ... ,Pb) being a partition of J (Qo)
w(Pi) are 'equal' and 'within capacity'

c3 y dk for j"EPk, kEB.

Here t(J)= t, ejt and W(Pk) EEP,. WP



2 SCHEDULING ALGORITHMS §2

Bin Packing can be seen to be a special case of Q0 if we ignore the

color restriction and the problem of equalizing the amount per bin and if

we set t(j) = 1 and interpret 'w(Pi) within capacity' to be w(Pi) 1. 3-

Partition can be viewed as a special case of Bin Packing so both Bin Packing

and 3-Partition appear as subproblems; each is NAP-complete in the strong

sense (Garey and Johnson 1979). In view of this it is interesting to know

for packing problems of the above sort what kind of heuristics will work

well and under what restrictive assumptions these problems can be solved

in polynomial time. In that the weights of items are rough estimates of the

court time required, it is reasonable to see if some advantage can be gained

by either interpreting the weight values liberally, or treating the constraint

w(Pk) 'equal' and 'within capacity' liberally.

In §2 we consider just the problem of distributing cases among panels

without district restrictions (items among bins without color restrictions) so

as to have 'nearly equal' work loads. In the remainder of this paper the item

weights are assumed to be in a restricted class. With this assumption we are

able to look at more complicated problems. In §3 we discuss the questions

of feasibility and optimality for problem (Q0) when the color restriction is

ignored. In §4 deals with the same questions for problem (Qo) with the

color restriction, but here it is necessary to add a further condition that we

have one 'color free' bin. In §5 we drop this 'color free' bin assumption and

characterize feasible packings with color restrictions.

2. Packing with Arbitrary Weights

The main objective in the calendaring problem is to schedule cases to provide

'full' and 'equal' work loads for the panels. We formulate the problem of

±!



§2 Packing with Arbitrary Weights 3

packing items, I, with arbitrary weights into bins, B, as evenly as possible as

z minimize maximum w(P) 'I
P < ib

where the minimization is over all partitions P = (P1 , ... ,P6) of I. b

IBI. This problem is JP-hard since it contains the AP-complete problem,

3-Partition. To see this observe that if the 3-Partition problem has bins of

size K then there exists a way to place the items into the b bins of size K if
*!

there is a partition of the items that gives a value of z* < K. This section

considers the heuristic: Place the largest unpacked item in the bin that has

the least amount in it so far; repeat until all items are packed. We will call

this LIME for 'Largest In Most Empty'. Let P = (P1, ... ,Pb) be a partition

of I given by LIME, and denote maxl<<bw(P) by 2. This heuristic is

also called LPT (Longest Processing Time) heuristic in the literature. The

problem is identical to that of multiprocessor scheduling of independent tasks

to minimize the latest finishing time. One would suspect that the worst-case

error, /z*, would be small if all the items were relatively small.

Theorem 2.1. If for all j E I, w3 E [0, iz*I and if the LIME heuristic gives

a partition P with value 2 then

k+3
- k+2

and the bound is tight.

Note that wj < z* so that k > 1 always holds and the ratio 2/z* < 4/3. This

was shown by Graham (1969) under the guise of multiprocessor scheduling.

To apply the theorem to obtain a better than 4/3 bound requires prior

knowledge of z! Note though, that (k' + 3)/(k' + 2) over estimates this ratio

when k' = L(w(f)/b) max36 1 (1/w,)J since w(I)/b is a lower bound on z*
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Scaling. We may assume without loss of generality that z* = 1. By scaling

each weight by I/,1 (i.e. wj - wj/z*) we have that the new scaled value of
*, [

z -- = and that0 < wi _ 1 for alljEI.

We begin the proof of Theorem 2.1 with

Lemma 2.2. If wj :_ a for all j E I then for the LIME heuristic

-<+ la.

z

Proof. Let s = w(I)/b. Claim: if bin i is filled to a level of at least s then

we never place another item in bin i. Assume not. Some item j is placed in

bin i with a level of at least a. Every other bin is filled to a level of at least

s since i was the most empty bin. Hence w(I) > w({1, . . ., - 1)) bs,

contradicting the definition of s. Clearly s < z* and if j is placed in a bin of

level t < sthent+w < 8+a < z* +a 1 +a.3

Proof of 2.1. Assume that there is a first item j that overfills bin i to a level

of at least k+. First observe that w3 0 [0, +2J by Lemma 2.2. Second, if

wj E ( +-], f] and it overfills a bin to a level k3, then the level in every bin

must be at least

k + 3 1 (k + 3)k-(k + 2) k + 2k- 2
k + 2 k k(k + 2) k(k + 2)

2 k-1

k(k+ 2) k

Thus every bin must have k items in it. Certainly no bin can hold more

than k such items and have a level under Z*. Hence there is no way to pack

items {1, ... ,j} so that the maximum level is at most z*, contradicting the

definition of z*.

It remains to show that wi (4' , d"']

_____________ k_ T I_ _ _ _ _ _ _ _ _ _ _



§2 Packing with Arbitrary Weights 5

Case k =1. Here we assume j is the first item to exceed level ?*. If

v; E Q~ 11 then there are either one or two items in each bin (after packing

{1, .. ., - 1)). Say the heuristic places item j in bin i. If there is only one

item, k, in the bin i, SO Wj + Wk > 1 then clearly Wk + Wv1 > 1 for every

I C {1, ... ,j. Hence any optimal packing of (1, ... ,j} must have item k in

a bin by itself. Since all other items stored one to a bin are larger than kc,

they too must be by themselves in any optimal packing of {1, . . .,j). Every

other bin has 2 items in it. If j is to be placed without exceeding z level

then 3 items must go in some bin but Wk > -1 for all k < j, contradiction.

Case k =2. Item j is the first to exceed level ~.If wj E then we can

write w3  E where 0 < c < A. Each bin is filled to a level at least

5 3 + c A+E. There can be either 2, 3 or 4items in abin. If there
are 2 then the larger one weighs at most 1 so the smaller, r, weighs at least

5 + c. Item r can only be packed in a bin with 2 items in an optimal packing

since if we compute the total weight of item r and the 2 two smallest items

we have
5 I

13 1

12
Here every item that is packed in a bin with 2 items can only fit in a bin

with 2 items in an optimal packing of 11,....,j}. Every bin can only take 3

so there is at least one too many items.1

Case k > 3. We assume that wy E d $ and that j is the first item to

exceed a level of at least t±-2 We will show that in fact the items {1, * j
could not be packed in b bins of size 1.
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Claim 1: Let wj = 4-i- - c where 0 < E < The level in the most-- (k+2)(k+)"

empty bin is at least
1

(k + 1)(k +2) + E

Proof.

k + 3 1 (k + 3)(k + 1)-(k + 2)

k +2 k+1 (k + 1)(k + 2)
k2 +3k+2 -1

(k + 1)(k + 2)
1

-- 1 +€
(k + 1)(k + 2)

Claim 2: Every bin has k, k + 1 or k + 2 items in it.

Proof. If it had k + 3 items then since each item weighs strictly more than

1 tk+3V2, the current level would be strictly greater than k--, contradicting the

definition of j being the first item to exceed that level. If it had k - 1 items

then the current level would be at most

k-I Ik I< 1 1 +4
k (k + 1)(k + 2)

contradicting claim 1.3

Claim 3: There is at least one bin, r, with k elements.

Proof. If this were not the case then every bin has at least k + 1 items and

there would be at least (k + 1)b + 1 items all of weight greater than 4-, but

only k + 1 of these items could possibly fit in a bin of capacity z* - 1. This

contradicts the definition of z*.l
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Claim 4: If x,>... > Xk are weights of items in bin r, the one with k

items, then

1 +
Zk> k+1

Proof.

1-
k > -+ -X .. k-1

(k + 1)(k + 2)
1 k-I

-- (k + 1)(k + 2) k

(k + 1)(k + 2) - k

kik + 1)(k + 2)

k2 + 2k + 2

k(k + 1)(k + 2)+
1

> -+
k+1 I

Claim 5: Let y " Yk+j be the weights of items in a bin q containing

k + 1 items, then

1
Yk-i> +

Proof. If not then by claim 4 and the fact that the items are packed by

decreasing weight, the k - 1st item was placed after the kth item in the r bin

(the one with k items). Thus the level in the q bin is at least

.....4 a, •. .
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XI + .. + Xk- + Yk-I + yk + Yk+I

1 1 ( 1 )

- (k +1)(k+2) k k+ 1

1 + -2ck + I k (k + 1)(k + 2)

3k -(k + 1) 3
k(k + 1) (k + 1)(k + 2)

(2k - 1)(k + 2) - 3k-=1+-
k(k + 1)(k + 2)

(k + 2 k(k + 1))

>k+3

-k+2

since

2k-2 >1
k(k + 1) -

iff 2k2 -2-k(k +1) > 0

iff k2 - k - 2 > 0

iff k(k- 1)- 2 > 0

iff k>2

contradicting that j was th'c first to exceed the level t+2

It is clear that if bin q had had k + 2 items of weights y, "" > Yk+2 then

1
Yk-- > +1

Claim 6: Let r be the number of bins with k items. Let s be the number of

bins with at least k + 1 items. Then we have by the previous claims that

there are at least kr + (k - 1)s 'large' items which weigh strictly more than

+ e, and at least 2a + 1 'small' items which weigh at least I - e. The

IIIII
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claim is that any rcpacking of the bins so that some bin q has k + 1 items

and a level of at most z = 1 must have at least 3 small items.

Proof. Assume you can do it with only 2. The level in such a bin with k - 1

large and 2 small items is strictly greater than

( 1) + + 2(k

=1 + (k - 3)c > 1

provided k > 3. I
To finish the proof of the upper bound in Theorem 5.1 observe that at

least s + 1 bins must have k + 1 items. The only way to place k + 1 items

into bins of capacity 1 is to have 3 small items. We can create at most 3

bins with k + 1 items by claim 6. This contradiction of the definition of z,

shows that wj (k-, 4]I
To see that the bound is tight consider the following examples param-

eterized by k = 1, 2, 3, .... We will produce an example that has an error of
at least k-3 - 6. Let n be large enough so that b5 - I - I) is 'small'

enough. We defined b so that -' + n6 - The list of items is

k+ of weight 1 + (2n - 1)6

k + 1 of weight k+4-+ (n + 1)6

k+ 1 of weight k- + n6

(k- 1)(k + 1) of weight k+ +n6 -

k + I of weight + (n - 1)6

k+ 1 of weight 4 +16
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k + 2 of weight + 06 

There are (k + 1)n bins. The LIME heuristic places the items in the bins so

that there are k + 1 identical sets of n bins as displayed below. Here a =

and each bin contains k + 1 items. The k - I middle ones are all of weight
_ _ I
k + n - k+l*

a+06 c,+16 a+(n-2)6 a+(n-1)6

a + n6 a + n6 a +n6 a + n6

a + n6 a + n6 ... a + n6 a + n6

a +(2n-1)6 a+(2n-2)6 a+(n+1)6 L a+n6

(a) (b) (y) (z)

n bins repeated k + 1 times

The k + 2nd item of weight 1 is not shown. Observe that each bin is filled

to a level 1 - 6. To see that all the items can be stored in (k + 1)n bins of

capacity 1 we move the item of weight 1 + 06 out of bin (a) and place it

aside. Next move the item which weighs k2 + 16 out of bin (b) and into bin

(a). Move the item which weighs kh + 26 out of bin (c) and into bin (b) and

so on. At this point all the bins labeled (a),(b), ... ,(y) are filled to level 1,

there are k + 2 items of weight 1 on the side and all the (z) bins have k

items of weight 1 +n6 = b. It is now possible to place all the items of
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weight k- in one bin and all the remaining items of weight - (there are

k(k + 1) of them) in the remaining k bins. The new packing looks like

a + 6 a + 2.6 a + (n - 2)6 a + (n - ) 6

a + n6 a + n6 a + n6 a + n6

a +n6 a + n6 a + n6 a + n6

a+ (2n - 1)6 a + (2n - 2)6 a + (n + 2)6 a + (n + 1)6

(a) (b) (x) (y)

n - 1 bins repeated k + 1 times

And the remaining bins labeled (z) look like

a +06

a + n6 a + n6 a + n6 a + 06

a + n6 a + n6 a + n6 a + 06

a + n6 a + n6 a + n6 a + 06

a + n6 a + n6 a + n6 a + 06

(s) () (a) (s)

- - U --
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3. Packing with Nested Weights

We rcturn now to the optimization problem introduced at the beginning.

Given a set of items, I, and a set of bins, B, find the optimal collection J C I

that solves

maximize t(J)
JCI

s.t. P = (PI, ... ,P 6) being a partition of J (Qo)
w(Pi) are 'equal' and 'within capacity'

cj 7z d,. for j E Pk, k E B.

In this chapter, in order to make this problem more tractable we assume that

the weights are restricted to be in a set V = {v 1 , ... , v,} where vi/vi+i E Z,

e.g. {1, 1/3,1/6,1/12, ... }. If the weights of I satisfy this assumption we

call them nested.

Notation.

C is the set of colors

I is the set of items

IZ is the set of items colored x

i is the set of items of weight vi

IT is the set of items colored x weighing vi

B is the set of bins (b - IBI)
BZ is the set of bins colored x

V is the set of possible weight values (n = IVI)

An item colored z we refer to as an z-item. We also call an item weighing vi,

a vi-item. Which is meant will be clear from context.

We start with the question of feasibility, i.e. when does there exist a

packing, that is a partition P = (PI, ... ,Pb) of I so that w(P) - sk for
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k = 1, ... , b where sk is the capacity of bin k E B. The following is almost

immediate from our assumption about the weights being nested.

Theorem 3.1. There exists a packing of items, I, into bins, B, if and only

if

W(IU ...UuIi) ZSkj, for i= 1, ... , IVI (3.1)
kEB

where [Yli = vi[y/vJ. We can find a packing in 0(111 + IVI) time.

Proof. The proof is by induction on III. If III = 1 and I = {j} where

w 3 = v% then

V W(IlU. U'I;) [Skj

so that some sk > vt. Place item j in bin k. Now assume we have a problem

with III = q. Let j be an item of largest weight in I, w i = vs.

w(I;) =w(i U ..- U/) E [8kj
kEB

so there is some bin k with 8 e, vi. Place item j in bin k. Remove item j

from I calling it I and reduce sk by v. So 3 = -vv, and ik = sk for

k / . Clearly (3.1) still holds for i = 1, ... ,- 1. For i > is

W( U ... U7) W(i U ...U ii) -vs

k B

= ~t~iJ, + Vi[aSk/J - vi(v/v,)
MED

since v,/vi is an integer

kEB
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Thus (3.1) holds for 7 and (9k)kEB, and by induction there exists a solution.

The induction suggests the following O([I1 + IVI) algorithm to find the

packing. Create IVI buckets for items and sort the items by weight using a

bucket sort. Do the same for the bins placing bin k in bucket vi if Sk Vi

but Sk < vi-. Here it is assumed that the weights wj and the capacities

Sk are such that the identification w =- vi or Ok Vi, Sk < vi- 1 can be

made in 0(1) time. Remove an item of largest weight, remove a bin from

the bucket with largest label and place the item in the bin, thus reducing the

capacity of the bin. Return the bin to the appropriate bucket. The sorts take

0(max(III, IVI)) time. The remainder requires 0(111) time. If the algorithm

attempts to pack an item of weight vi into a bin of capacity Sk with sk < vi

then (3.1) is violated. I

If in fact we wish to fill each bin to capacity, w(Pk) = Sk, then it is only

necessary to change the last inequality in (3.1).

Theorem 3.2. There exists a packing P = (Pi, ... ,Pb) of I into bins B

such that w(Pk) = ak if and only if

w(IiU'".UuI) - [sjJ 1 for i 1, ... ,IVI- 1

kEB

W(V) =k
kEB

Using Theorem 3.2 we are able to solve the optimization problem which is

formally

maximize t(J)JC I

P = (PI, ... ,Pb) partitions J (Q3)
W(P)= 8

Theorem 3.3. (Q3) can be solved in 0(111 log III) time.

. - . .. .. .2 I j I f - I II I . .... i
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Proof. Using Theorem 3.2 we have that

-~d
8 'k - E L'kJ3 i 4

kEB kEB

- Z(8k - [8.Ji)
kEB

Since every feasible solution fills every bin there must be at least

s [tskJ,_.1 )/vn items of weight v,
kEB

to fill the top segments of these bins where Sk - [8kJ,,- 1 > 0. For example
if V = 1, 11 and 8k = 12 then we need at least 2 o1w

3 i/ fV-{= 2 items of weight

to fill this bin. If there are any additional items of weight v, then they will

come in integral multiples of v,,-/v 1 . The procedure is to sort the items of

weight v,, by decreasing tj values and choose the best EkEB(-k-l )/V.

of them. Next, group the remaining va-items into packets of cardinality

vn- 1 /vn. Call these packets G1, I 1, ... ,q. Pack the best v-/vn in

G1, the next best in G2 and so forth. The justification for this procedure is

that if there are going to be

r - = r(sk- LskJn8l)/Vn + mV -- l for m = 1,2, ...

kEB 
V"

in the solution then they will clearly be the r with largest ti's. Place the

'kEB(8k - LskJ.-_)/vn items in the bins where sk - LskJ, 1 > 0 and reduce

their capacities. Replace each packet, G1, and the associated vn-items by

one vn-i-item with tiG - ti. The problem has been reduced to one

with no vn-items. Formally the induction argument is: if IVI = I{v1}I = 1

the optimal subset J* is the one with -&EB 5k/vl best items. If we have a

±!



16 SCHEDULING ALGORITHMS §3

problem with IVI = n apply the procedure above to reduce the problem to

one where IVI = n-1. By induction we find a subset J* that is optimal to the

smaller problem. By the argument above J* with the EkEB(Sk-[Skj,t)/Vn

items already chosen is optimal to the original problem.

The procedure to find the optimal subset J* is

J* 4 -0

Sk [skJj for k = 1...,b

for i*- n, ...,1 do begin
sort Ii by profit values

remove ) ikB(Sk - 1skJi-l)/vi best items from Ii

and place them in J*

8k - BSkJil for k E B

while 1i 3 0 do begin
remove best vi-1/vi items from Ii, call it E

add one v,_-item to Ii-I with profit tE = Zjbw t,

end

end

It remains to justify the time bound. There are JIiJ items of weight vi in I.

Once the sorting is completed at any particular stage it requires only linear

time to group the items, so clearly the sorting is dominate in the time bound.

Let n -- IVI then there are n sorts to be done. The first stage sorts 1l,4
items, the second I,-,I + L11 ,/,,,-,, and the third

.-< 1 + [n-ll--_ ( + [_ II

Vn-2 n-J

<5I-2+'gI + ' InJ

the kth stage sorts at most



§3 Packing with Nested Weights 17

?J-j

i.0n-(k.1)

k-i

i-- o k.-( -l)

If T is the total time for sorting,

n k 1 
1 -I

n-1 j

k('j,,(: , J) *.)

O(Ixjlog I) ) I

A slight modification of the above procedure will allow it to handle the

problem where each bin is not required to be completely full. The problem

is formally
maximize t(J)

JcI
P = (Pf, ... ,Pb) partitions J (Q4)

W(Pk) < Sk

First if ti < 0 then we may drop item j. Next we may consider each set Ii

of items, to be padded with enough zero profit items ( ti = 0) so that every

item is either placed in J* or is passed up as a part of a larger item into Ii-I.

Call this new set of items I. We now solve (Q) with the augmented set 7.

To justify this consider the augmented problem with a large number of items

of weight v, and ti =0 . We solve

maximize t(J)

P = (P1, ... ,Pb) partitions i (Q5)

W(Pk) = o,
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If P (pl, ...,P) is a partition of 3 that solves (Q5), then let J Jn,

and Pk = PknI and we claim that P = (P1, ... , Pb) which is a partition of

J is optimal to (Q4). Let R = (RI,..., Rb) be a partition of K an optimal

solution to (Q4). Hence t(K) - t(J). Add (9k - w(Rk))/v. dummy items

of weight v,, and profit 0 to Rk and thus K, creating k. This is feasible to

(Q5). We have

t(K) = t(k) _ t(.)= t(J).

Hence J is optimal to (Q4). I

Corollary 3.4. If each bin k, with capacity Sk is such that s8,/vi E Z then

there exists a packing of I into bins B if and only if w(I) _ YjkEB Sk.

Proof. If 8k/v E Z then 8k = [ak]i for all i, so the nth inequality implies

the rest and

W() WhU...- U In) -5 1: Lk J =
kEB kEB

Example. Let us solve a problem of the form (Qo) with IBI = 2, 81 = 1,

82 = 1, V = 1, }, [i = 10, where {(wj,t,) I i E I} = {(1, 7), (1, 8),

(A, 3), (A,2), (1, 2), (1, 4), ( , 1), ( ,2), (Q, 1), ( ,3)}. First we sort the items

of size by 't' values to get: ( ,3), ( ,2), ( ,2), (1, 1). We then combine

them into items of size 3: (1, 5), (k,3). Now sort all the items of size 1:
(A,5), (A,4), (1,3), (,3), (,), (1, 2). Remove the best one for the space of

size in bin 2, and then combine the rest into items of size 1: (1, 10). Sort

all the items of size 1: (1, 10), (1, 8), (1, 7). Pick the best 2 for the spaces of

size 1 in bins 1 and 2. The optimal solution is: ( , 4), (1, 3), (1,2), 1) in

bin 1 and (1, 8), (1,3), (k,2) in bin2.

.!~
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Note. If sk/vil E Z for all k the optimization problem (Q4) is just the

knapsack problem
maximize t(J)

JCl

W(J) < _
kEB

where the weights, w3 , are nested. Although this problem is JVP-hard for

arbitrary weights by Theorem 3.3 it is solvable in 0(11j log III) time.

4. Packing with the Color Restriction

We now ask when will a given set of colored items, I, exactly pack into b

colored bins, B, all of capacity s,(s/vi E Z) and meet the color restriction.

We assume without loss of generality that s = 1.

Denote by I' the items colored x i.e. {j I i E I,c 3 = x}. A simple

necessary condition is

w() b - IBI for all z E C (4.1)

To see this observe that if in fact w(I-) > b - IBZI then the total weight

of items colored x exceeds the available space in bins not colored x. If we

assume further that all items have the same weight then (1) is sufficient. This

is just a special case of Hall's theorem for perfect matchings but it will be

useful in § 5.

Theorem 4.1. If all items in I have the same weight then there is a packing

into the bins B that satisfies the color restriction if and only if

av(I) = b and w(IP) <_ b- 1B1J for all z E C. (4.2)

Further, we can find a maximum packing in 0(11I) time.
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We give the algorithm first because this special case can be solved faster than

the general case cf matching, 0(111) rather than 0(11125) time, see Even and

Kariv (1975), and second to introduce some ideas we use later.

Proof of 4.1. The necessity of the condition was shown above. To see

sufficiency assume (4.2) holds and apply the algorithm: Place items into any

available bins into which they are allowed. Assume this procedure stops at

some point without packing all the items. Space can only be available in

bins of one color, say x, and the only remaining unpacked items must also

be colored x. Search the non-x-bins for one that contains a non-x-item.

If you find one replace the item with an x-item and repack this replaced

item in some z-bin. Thus we can assume that every non-x-bin is filled with

x-items. If there are still more x-items to be packed then clearly w(Ix) >

b - IBZI contradicting (4.2). It remains to show that this algorithm can be

implemented in 0(111) time.

First we may assume without loss of generality that the bins have been

broken down into 'subbins' all of capacity vj. Assume that the colors are

labeled 1, ... , ICI. Create ICI buckets for bins. Place the bins into buckets

according to color. Create ICI buckets for items and sort the items by color.

This requires O(IB I + III + ICI) time and we assume here that 1!11 < 11 and

ICI < III. Next we perform the following:

• II I I I II I l ' -
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while (there remain items to be packed ) do begin
if bin-bucket b is empty then b --- b + 1

else if item-bucket i is empty then begin
i4i+l

if i = b then begin
place any bins in bucket b into the bottom of bucket 1
b b+ l

end

end

else begin
remove item from bucket i

remove bin from bucket b

place item in bin

end

end

Clearly the algorithm executes the loop in 0(111 + ICI) time since each time

we either pack an item or we pass over a bin or item-bucket. If an item

colored z is placed in a bin colored z then the number of items colored z is

greater than

IB+ 1I +... + BICII + IB'I + '+ IBE-II

thus we have

w( ) > b-IBI

contradicting our assumption. I

Obviously for nested weights the necessary conditions (4.2) are not suf-

ficient. As an example consider a 2 bin problem, one red and one blue bin,

- ' --- "=- -.. .. ~- °r - - .. . - - I =1"
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with 3 items, one red item of weight I, one blue item of weight and a

white item of weight 1. The red item must go in the blue bin, the blue item

must go in the red bin, and there is no space for the large white item. It is

somewhat surprising then that if there is just one 'color free' bin, i.e. one

that will accept any item, then (4.2) is sufficient.

Theorem 4.2. If B contains one 'color free' bin, and J is a set of items

with nested weights then there exists a packing of J into bins, B, that meets

the color restriction if and only if

w(J) = b and w(JZ) < b -IB'I for all x E C. (4.3)

Before we prove Theorem 4.2 we need a lemma.

Lemma 4.3. Given a set of items J, w(J) = I and let j be an item of

smallest weight, then for all v E V, v > wi, there exists a subset K that

includes item j such that w(K) -- v.

Proof. Let Jlarge = {k E J I wk ! v} Jsmall = J - Jlarge" The capacity

consumed by the small items, Jsmall, is a multiple of v. Create W(Jsmall)/v

subbins of capacity v. Sort the items in Jsmall in decreasing order by weight,

i.e. w, > ... -> wi , so that the jth item is last. Pack Jsmall into the subbins

via First Fit Decreasing (Johnson et al. 1974), i.e. place items in the order

specified above in the first available subbins that have sufficient capacity. We

can do this by Corollary 3.4. Clearly the contents of the last subbin is the

desired set K. K contains " and w(K) = v.n

Proof of 4.2. The proof of sufficiency is again by an algorithm that finds the

packing. First sort the items into decreasing order by weight. Place items

into any bins into which they will fit until you are stuck. Because the items
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are being packed in decreasing order any remaining capacity in a bin is a

multiple of the weight of the item currently being packed. In fact, if not all
5,

the items are packed then we are currently trying to place an item j and the

only available capacity is in bins colored cj.

Temporarily place the item j, in some c'-bin.

Case 1. The 'color free' bin is not completely filled with ci-items:

In this case there exists an item k, of weight wk > wj not colored ci in the

'color free' bin. If wk = wj exchange items j and k. If Wk > wj first fill the

bin containing item j with dummy items of weight wj. Apply the lemma to

obtain a subbin of items K, j E K and w(K) = wk. Exchange the subbin

K with item k and remove the dummy items from the bins.

Case 2: Every item in the 'color free' bin is colored ci:

Search all the packed non-cj-bins for one, say i, containing a non-cj-item,

k. This must exist by (4.3). Otherwise every non-cy-bin would be filled with

ci-items and if we include the item j then

wCIc') > b -IZ ,l

violating (4.3). Exchange the complete contents of the 'color free' bin with

that of bin i found above. Notice that this does not violate the color restric-

tion since bin i is not colored cj and we are only placing cy-items in it and

any item legally goes into the 'color free' bin. Further, the non-ci-item, k, is

now in the 'color free' bin so we are back in case 1.1

Corollary 4.4. If the necessary conditions (4.3) hold then there exists a 4

packing of items, J, into bins, B, that violates the color restriction in at

most one bin.

Proof. Temporarily remove the color from any bin, i. Since there is now

a 'color free' bin and (4.3) holds we apply Theorem 4.2 to obtain a packing I
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that meets the color restriction. Now repaint bin i with its original color.

Clearly this is the only bin that could violate the color restriction. |

Example. Consider the problem with JBI = 3 with one green, one blue and

one red bin each of size 1. Let V = {1, '} and {(wj,,c3 ) Ij E I} = {(I, red),

(1, blue), (1, blue), (1, red), (1, yellow)}. First observe that there are no green

items so the green bin can act as a color free bin. We pack the items in

decreasing order: (1, red) into the green bin, (1, blue) into the red bin, ( ,red)

into the blue bin. At this point we are blocked from legally placing the next

item, (-, blue) into the blue bin as shown below.

(1,red) (1,blue) l(1/3,red), (1/3,blue)

green red blue

Since the color-ftee bin is not completely filled with blue items we exchange

the smallest non-blue item in the color free bin with something in the blue

bin to get

I 1/3,red), (1/3,b lue) [(1,blue) [(1,red)[

green red blue

The other item, (j, yellow), may now be placed.

Note. The existence of a color free bin is not necessary. Consider the 2 bin

example: one red bin and one blue bin, 4 items of weight I one red, one blue,

and two green.
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If we continue to assume that B contains a 'color free' bin then the

optimization problem (Qo) reduces to

maximize t(J)
jCI

w(J) = b (Qe)

w(J') _< b- IBI for all x E C

where J= is the set of items colored x in J. This can be solved via a dynamic

programming recursion.

Theorem 4.5. (Q6) can be solved by a dynamic programming recursion in

O(ICI(IBI/V.) 2 + III(IBI/v,,)) time where v,, is the smallest weight in V.

Proof. Let I - IU and define for a subset E C C,

fB(S) = maximum t(J)

t(J) -= a

w(J) _ b- IB=I for all x E E.

For a given subset of colors E, fE(s) is the value of the best set of items with

colors in E, which has total weight a and meets the necessary conditions (4.3).

In particular
fJ(.9) - maximum t(J)

v(J) "-- s(4.4)
v(J) a -Bw(J-) < b -IB'I

and f{ (8) is defined to be -oo for a > b - lB. First compute f(z}(6) for

all colors x E C and all a. Then recursively compute I(t).

f U {}(t) - maximum {f(4(8) + IB(t - .)} (4.5)
0<8<t

The validity of the above recursion is seen by observing that the optimal

solution to the problem (Qe) restricted to colors EU {z} with b = t must
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contain some amount of z-items from 0 to t. We simply maximize over

all such combinations. It should be clear that the subset J* giving value

fc(b) is the solution to our problem. The computation of f{X}(s) for all a

requires O((IBI/v,,)II 2I) time via the standard dynamic programming recur-

sion for the knapsack problem. To compute f(')(a) for all x E C requires

o((IBI/v.) -C III) = O((lB/v)I~l) time. Each application of the recur-

sion (4.5) requires O(IBl/v,,) time. To compute this for all values of t E

{O, vn,2vn, ... ,b} requires O((lBl/vn) 2) time and we need to compute this

ICJ times to find f 0 (b). Hence the total time bound is

o((IBI/V)III + (IBI/V) 21CI).

5. Characterizations for Packings with Color Restriction

We now characterize packing problems that have solutions in terms of the

existence of flows in a particular kind of network.

For the moment we return to the case IVI = 1 and by Theorem 3.1

the conditions w(P) b - 1B1 for all x E C are sufficient. If we turn this

inequality around and think of the 1B1j as variable for a second we have that

JB=1 < b - w(P) = w(I) - w(12 ) for all z E C

or we can pack all the items (not necessarily filling the bins) if and only if

max(IB i, w(I) - w(P)) _ w(I). 'I

XEO

Looking at this from a network point of view let there be a supply node with

supply IB3I for each X E C, one demand node with a demand of w(I), and a
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capacity of w(I) - w(Iz) on the arc from source x to the sink. We have that

there exists a packing of I into B if and only if there exists a flow of value at

least w(I) in the network. This is pictured below.

i w( II

is

18 Iclt

We now jump to the general case.

Definition 5.1. A cascade is a network of the following form: there are ICI

sources. Source x E C has a supply of s.=- IBZI. There are IVI sinks. Sink

vi E V has a demand of di 1  vilI!, i.e. total weight of items with weight vi.

The structure is shown below.

dd
2

1 2 n-1
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The cascade is divided into vi sections. The flow in the arcs of section

i is restricted to be an integral multiple of vi. The capacities on the arcs in

section i, denoted by c2i and d, for the 'down' and 'up' arcs respectively

that are connected to source x, are given by

d,,i = di - w(IT) for i --= n, ..

Czn = 0 (5.1)
cz,- I-= [(d, + c2,)J, for i n, ... ,0

Definition 5.2. We say that there is a feasible flow in the cascade if there

exists a flow (f, g), where fri, (g.,) are the flows in the down (up) arcs, such

that

(capacity) 1hi < c2i gzi :5 d , (5.2a)

(conservation of flow) -1= fh, + g=, (5.2b)

(supply = demand) fho "--sz =
g  di (5.2c)

ZEC

fi/vi E Z gzi/vi E Z (5.2d)

In words a flow that uses the supply, meets the demand, satisfies conser-

vation of flow and further the flow in the arcs of section i of the cascade are

an integral multiple of vi.

The importance of the cascade to the packing problem is

Theorem 5.8. Every packing induces a feasible flow and every feasible flow

induces a packing.

Proof. Assume we have a packing {P}zEc where P' is the set of items

that are packed into bins colored z. We now apply the following algorithm

_______-- - .
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to compute f and g

f=g=O

for x E C do begin
for i = 1, ... , IVI do

for each item " EIi lP do

gzi - gzi + Vi

for i -1V1, ... , 1 do

hi-I hi + g=i

end.

We now claim that (f, g) satisfy (5.2) and thus constitutes a feasible flow.

Clearly (f, g) satisfies (5.2b) conservation of flow since this the way it was

computed. As for (5.2a) we have

gi w({ all items of weight v, in bins colored x)

< w({ all items of weight vi not colored z})

By a simple induction on i we have that
'

- i(/-i + g,)J,
< [(ci + di)J;

I

To see (5.2c) observe that

9x,= E w({all items of weight vi in bins colored 4)
zEC zEO

= w({all items of weight vi})

= di

1h0 = E w({all items of weight v, in bins colored z})
=I<I v,

=-IB-I _=e
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Finally for (5.2d) we know,

gzs/vi E Z

since it was computed as a sum of vi's. To see f=ilvi E Z, observe that all

the bins are full (thus all x-bins are full). We thus have that items of weight

v, come in groups of cardinality vn-I/V, thus h,-1 is a multiple of Vn-1.

Now viewing each group of v,-l/vn items of weight vn as 1 item of weight

v,-i we may proceed inductively to see that fi is a multiple of vi.

Now assume we have a feasible flow in the cascade we wish to show how

this induces a packing. Let (f, g) be a flow, and for each z E C divide the

z-bins into smaller subbins so that there are ggs/vi subbins of capacity vi.

This can be done since ,1<i<IVI g9i - ax. Now for each weight vi E V we

need to place the items of weight vi. We know this can be done by Theorem

3.1 if and only if

v,(number of bins of capacity vi and color z) + w(I?) di

if and only if

g, _ di - w(I ) =d=

But this is just the capacity constraint on the flow. Thus there is a way to

pack the items into the subbins as they have been divided above. I

The second characterization is actually a corollary of Theorem 4.2. The

idea is simply if the packing problem can be divided into two packing prob-

lems, the first one having a color free bin and the second has a solution then

there is a solution to the entire problem and conversely.

Theorem 5.4. Let J be a set of items and B be a set of bins then there

is a feasible packing of J into B if and only if there exists for some color x

I~1~ 4 - -



§5 Characterizations for Packings with Color Restriction 31

a partition of J = J, UJ2 and B = BI UB 2 such that JilnJ1  0 and

B1 f B 1 #0 and there is a feasible packing of J2 into B 2.

Proof. (i=) This half is obvious from Theorem 4.2 since the bin in Bfn B1

acts as a 'color free' bin and J2 pack into B 2 by assumption.

(=i) Pick a color x for which there is an item j. Take a feasible packing and

let B, be the set containing the bin with item j. Let J, be the set of items

in this bin.I

Unfortunately neither of these characterizations appears to lead to a

polynomial algorithm. There are no known techniques for solving flows in

cascade networks. In fact it is not hard to see that a cascade can be converted

to a network with capacities and gains on the nodes. Thus it is closely related

to a IP-complete problem. Here the gains would be 1 and Vk-l/vk for Vk E

V. Thus for V ={, , _. . } the only gains would be l and 2.

Theorem 5.5. Given a network with multipliers on the nodes and capacities

on the arcs, the question: is there a integral flow of at least K, is .AP-complete

even if all gains are either 1 or 2.

Proof. Let b} be an instance of Partition. The question: is there a

subset S C {1, ... ,n} such that jes aj =- b/2 is WP-complete. We show

how to convert this instance to a network with capacities on arcs and gains

of 1 and 2 on the nodes, so that the desired subset corresponds to a integral

flow of b/2.

First consider the network
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of 1 and 2 on the nodes, so that the desired subset corresponds to a integral

flow of b/2.

First consider the network

a

an

where the capacities are the number on the arcs and the gains are the numbers

on the nodes. Clearly Partition has a solution if and only if this network has

an integral flow of b/2. We now show how to reduce each node with a gain

of a to a network with gains of only 1 and 2, using O(log3 a) nodes. Let the

binary expansion of a be did 2 ... dk where di 0, 1 and 1 = '1<<_ dI.

consider the network

d 2 t

We now convert each
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2j)

to

2

We now have 0(k2 ) nodes. We now repeat the process for the node with

multiplier of I. The number of ones in the binary expansion of I is less than

the number of ones in the binary expansion of a, so we need only repeat this

process at most [log a] times. We require O(log3 a) nodes in the siction of the

network representing the original node with gain a. We have thus reduced

Partition to an instance of a network with arc capacities and nodes with gains

of l and 2. The network has at most

< - log3 ainodes.

The reduction is polynomial and the network problem is .AP-complete.1

For a final result we return to the problem of simply distributing the

weights evenly among the bins.

Theorem 4.4. If I is a set of nested weights then the LIME heuristic gives

an optimal solution to

• * minimise maximum tv(P,)

P 1:_<:56

J l ll I nn li . ... - , I . . .. . . In  
. . . Inll . . ..P

. ..A, , ,. . . . . .. . .. ' '
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where the minimization ranges over all partitions P-- (Pi, ... ,Pb) of 1.

Proof. By induction on III. Clearly it is true for I1 = 1. Let III k, let j

be one of the items of least weight and apply the heuristic to = I - {j}.

By induction the heuristic gives an optimal partition P = (PI, ,Pb) of 1.

Denote maxl<i<bw(Pj) by s. If the most empty bin, q, has w(Pq) < . then

by the fact that the weights are nested, s-w(Pq) is an integral multiple of w,.

Place item j in bin q and the value of the solution does not increase. Hence

it is an optimal partition of I. Otherwise w(h1 ) =a for all l = 1, ... , b, so

we may place item j in any bin. Since wi is the smallest weight, the optimal

value must be an integral multiple of wi. A lower bound for z* is w(I)/b > 8

but the value of the solution found is the smallest multiple of wj greater than

8 and thus is optimal.I
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SOL 81-9: "Exact and Approximation Algorithms for a Scheduling Problem,"
by Gregory Dobson

This paper discusses problems that arose in calendaring cases for an
appellate court. The first problem is to distribute cases among panels of
judges so as to equalize work loads. We give a worst case analysis of a
heuristic for this NP-complete problem. For a given distribution denote by
z the heaviest work load. We wish to minimize z. The ratio of the
heuristic value i to that of the true optimum z* Is shown to be
z/z* < (k+3)/(k+2) where all the case weights are in [0, (1/k)z*],
generalizing a result of Graham on multiprocessor scheduling. Under a
restrictive assumption on the case weights, some generalizations of this
scheduling problem are solved. Characterizations for feasible calendars and
polynomial algorithms for finding these feasible solutions are given.
Algorithms are given for choosing an optimal subset of the backlogged cases
that can be calenoared.
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